django-constance Documentation
Release dev

Jazzband

Aug 21, 2023

Contents

10

11

12

13

14

Features

Quick Installation

Configuration

Signals

Custom fields

Ordered Fields in Django Admin
Fieldsets

Fieldsets collapsing

Field internationalization

Usage

10.1 Python
10.2 Djangotemplates
103 CommandLine

Editing
Custom settings form

More documentation

13.1 Backends
132 Testing o v v i i e e e e e e
13.3 Changelog e

Indices and tables

Index

11

13

15

17

19

...................... 19
...................... 19
...................... 20

23

25

27

...................... 27
...................... 30
...................... 32

39

41

CHAPTER 1

Features

« Easily migrate your static settings to dynamic settings.

« Edit the dynamic settings in the Django admin interface.

Django administration Welcome, jbar. Change p vord / Log out

Home » Constance : Caonfig

Constance config

Name Default Value Is modified
BANNER The National Cheese Emporium . : (-]
name of the shop The National Cheese Emporium
DATE_ESTABLISHED MNow. 30, 1972, midnight Date: 1972-11-30 Today El -]
the shop's first opening
Time: | pg:00:00 | MNow | (Z)
MUSICIANS 4 4 (-]
number of musicians inside the shop
OWNER Mr. Henry Wensleydale /]

owner of the shop Mr. Joseph Wensleydale, Ir.

django-constance Documentation, Release dev

2 Chapter 1. Features

CHAPTER 2

Quick Installation

For complete installation instructions, including how to install the database backend, see Backends.

django-constance Documentation, Release dev

4 Chapter 2. Quick Installation

CHAPTER 3

Configuration

Modity your settings.py. Add 'constance' to your INSTALLED_APPS, and move each key you want to
turn dynamic into the CONSTANCE_ CONF IG section, like this:

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.staticfiles’,
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions"',
'django.contrib.messages',

'constance’',

CONSTANCE_CONFIG = {

'THE_ANSWER': (42, 'Answer to the Ultimate Question of Life, '
'The Universe, and Everything'),

Note: Add constance before your project apps.

Note: If you use admin extensions like Grapelli, ' constance' should be added in INSTALLED_APPS before
those extensions.

Here, 42 is the default value for the key THE_ANSWER if it is not found in the backend. The other member of the
tuple is a help text the admin will show.

See the Backends section how to setup the backend and finish the configuration.

django-constance’s hashes generated in different instances of the same application may differ, preventing data
from being saved.

https://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS
https://grappelliproject.com/
https://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS

django-constance Documentation, Release dev

Use CONSTANCE_IGNORE_ADMIN_VERSION_CHECK in order to skip hash verification.

CONSTANCE_IGNORE_ADMIN_VERSION_CHECK = True

6 Chapter 3. Configuration

CHAPTER 4

Signals

Each time a value is changed it will trigger a config_updated signal.

from constance.signals import config_updated

@receiver (config_updated)
def constance_updated(sender, key, old_value, new_value, xxkwargs):
print (sender, key, old_value, new_value)

The sender is the config object, and the key and new_value are the changed settings.

django-constance Documentation, Release dev

8 Chapter 4. Signals

CHAPTER B

Custom fields

You can set the field type with the third value in the CONSTANCE_CONF IG tuple.

The value can be one of the supported types or a string matching a key in your :set-
ting:CONSTANCE_ADDITIONAL_FIELDS

The supported types are:
* bool
e int
e float
* Decimal
* str
* datetime
* date
* time

For example, to force a value to be handled as a string:

'THE_ANSWER': (42, 'Answer to the Ultimate Question of Life, '
'The Universe, and Everything', str),

Custom field types are supported using the dictionary :setting: CONSTANCE_ADDITIONAL_FIELDS.

This is a mapping between a field label and a sequence (list or tuple). The first item in the sequence is the string path
of a field class, and the (optional) second item is a dictionary used to configure the field.

The widget and widget_kwargs keys in the field config dictionary can be used to configure the widget used in
admin, the other values will be passed as kwargs to the field’s __init__ ()

Note: Use later evaluated strings instead of direct classes for the field and widget classes:

django-constance Documentation, Release dev

CONSTANCE_ADDITIONAL_FIELDS = {

'ves_no_null_select': ['django.forms.fields.ChoiceField', {
'widget': 'django.forms.Select',
'ChOlC@S'Z ((None, w__ "), ("yesll, "Yesﬂ), (llno", HNOH))

1y

CONSTANCE_CONFIG = {
'MY_SELECT_KEY': ('yes', 'select yes or no', 'yes_no_null_select'),

If you want to work with images or files you can use this configuration:

CONSTANCE_ADDITIONAL_FIELDS = {
'image_field': ['django.forms.ImageField', {}]

CONSTANCE_CONFIG = {
'LOGO_IMAGE': ('default.png', 'Company logo', 'image_field'),

When used in a template you probably need to use:

{% load static %}

{$ get_media_prefix as MEDIA_URL %}

Images and files are uploaded to MEDIA_ROOT by default. You can specify a subdirectory of MEDIA_ROOT to use
instead by adding the CONSTANCE_FILE_ROOT setting. E.g.:

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
CONSTANCE_FILE_ROOT = 'constance'

This will result in files being placed in media/constance within your BASE_DIR. You can use deeper nesting in
this setting (e.g. constance/images) but other relative path components (e.g. . . /) will be rejected.

10 Chapter 5. Custom fields

CHAPTER O

Ordered Fields in Django Admin

To sort the fields, you can use an OrderedDict:

from collections import OrderedDict

CONSTANCE_CONFIG = OrderedDict ([
('"SITE_NAME', ('My Title', 'Website title')),
("SITE_DESCRIPTION', ('', 'Website description')),

("THEME', ('light-blue', 'Website theme')),
1)

11

django-constance Documentation, Release dev

12 Chapter 6. Ordered Fields in Django Admin

CHAPTER /

Fieldsets

You can define fieldsets to group settings together:

CONSTANCE_CONFIG = {

'SITE_NAME': ('My Title', 'Website title'),
'SITE_DESCRIPTION': ('', 'Website description'),
'THEME': ('light-blue', 'Website theme'),

}

CONSTANCE_CONFIG_FIELDSETS = {

'General Options': ('SITE_NAME', 'SITE_DESCRIPTION'),
'Theme Options': ('THEME',),

Note: CONSTANCE_CONFIG_FIELDSETS must contain all fields from CONSTANCE_CONFIG.

13

django-constance Documentation, Release dev

Constance config

General Options

NAME DEFAULT VALUE IS MODIFIED
SI—'IIE_:IAN!E My Title My Title [x]
s
SITE_DESCRIPTION [x]
Website description
4
Theme Options
NAME DEFAULT VALUE 1S MODIFIED
THEME ignt-olue ight-blue °

Chapter 7. Fieldsets

CHAPTER 8

Fieldsets collapsing

To make some fieldsets collapsing you can use new format in CONSTANCE_CONFIG_FIELDSETS. Here’s an ex-
ample:

CONSTANCE_CONFIG = {
'SITE_NAME': ('My Title', 'Website title'),
'SITE_DESCRIPTION': ('', 'Website description'),
'THEME': ('light-blue', 'Website theme'),

CONSTANCE_CONFIG_FIELDSETS = {
'General Options': {
'fields': ('SITE_NAME', 'SITE_DESCRIPTION'),
'collapse': True
}I
'Theme Options': ('THEME',),

15

django-constance Documentation, Release dev

16 Chapter 8. Fieldsets collapsing

CHAPTER 9

Field internationalization

Field description and fieldset headers can be integrated into Django’s internationalization using the gettext_lazy
function. Note that the CONSTANCE_CONFIG_FIELDSETS must be converted to a tuple instead of dict as it is not
possible to have lazy proxy objects as dictionary keys in the settings file. Example:

from django.utils.translation import gettext_lazy as _

CONSTANCE_CONFIG = {

'SITE_NAME': ('My Title', _('Website title')),
'SITE_DESCRIPTION': ('', _('Website description')),
'THEME': ('light-blue', _('Website theme')),

CONSTANCE_CONFIG_FIELDSETS = (
(
_('General Options'),
{
"fields': ('SITE_NAME', 'SITE_DESCRIPTION'),
'collapse': True,
}V
)I
(_('"Theme Options'), ('THEME',)),

17

django-constance Documentation, Release dev

18 Chapter 9. Field internationalization

cHAaPTER 10

Usage

Constance can be used from your Python code and from your Django templates.

10.1 Python

Accessing the config variables is as easy as importing the config object and accessing the variables with attribute
lookups:

from constance import config
#

if config.THE_ANSWER == 42:
answer_the_question ()

10.2 Django templates

To access the config object from your template you can pass the object to the template context:

from django.shortcuts import render
from constance import config

def myview (request) :
return render (request, 'my_template.html', {'config': config})

You can also use the included context processor.

Insert 'constance.context_processors.config' at the top of your
TEMPLATES['OPTIONS'] ['context_processors'] list. See the Django documentation for details.

This will add the config instance to the context of any template rendered with a RequestContext.

19

https://docs.djangoproject.com/en/1.11/ref/templates/upgrading/#the-templates-settings

django-constance Documentation, Release dev

Then, in your template you can refer to the config values just as any other variable, e.g.:

<hl>Welcome on {{ config.SITE_NAME }}</hl>
% if config.BETA_LAUNCHED %}
Woohoo! Head over here to use the beta.
{% else %}
Sadly we haven't launched yet, click here
to signup for our newletter.
{% endif ¢}

10.3 Command Line

Constance settings can be get/set on the command line with the manage command constance
Available options are:

list - output all values in a tab-separated format:

$./manage.py constance list
THE_ANSWER 42
SITE_NAME My Title

get KEY - output a single values:

$./manage.py constance get THE_ANSWER
42

set KEY VALUE - set a single value:

$./manage.py constance set SITE_NAME "Another Title"

If the value contains spaces it should be wrapped in quotes.

Note: Set values are validated as per in admin, an error will be raised if validation fails:

E.g., given this config as per the example app:

CONSTANCE_CONFIG = {

'DATE_ESTABLISHED': (date(1972, 11, 30), "the shop's first opening"),

Setting an invalid date will fail as follow:

$./manage.py constance set DATE_ESTABLISHED '1999-12-00"'
CommandError: Enter a valid date.

Note: If the admin field is a MultiValueField, then the separate field values need to be provided as separate arguments.

E.g., a datetime using SplitDateTimeField:

20 Chapter 10. Usage

django-constance Documentation, Release dev

CONSTANCE_CONFIG = {
'DATETIME_VALUE': (datetime (2010, 8, 23, 11, 29, 24), 'time of the first commit'),

Then this works (and the quotes are optional):

./manage.py constance set DATETIME_VALUE '2011-09-24' '12:30:25"

This doesn’t work:

./manage.py constance set DATETIME_VALUE '2011-09-24 12:30:25"
CommandError: Enter a list of wvalues.

remove_stale_keys - delete all stale records in database:

$./manage.py constance remove_stale_keys

Record is considered stale if it exists in database but absent in config

10.3. Command Line 21

django-constance Documentation, Release dev

22 Chapter 10. Usage

cHAPTER 11

Editing

Fire up your admin and you should see a new app called Constance with THE_ANSWER in the Config pseudo
model.

By default, changing the settings via the admin is only allowed for superusers. To change this, feel free to set the

CONSTANCE_SUPERUSER_ONLY setting to False and give users or user groups access to the constance.
change_config permission.

23

django-constance Documentation, Release dev

Django administration

Site administration

Groups deadd s Change
Users deidd s Change

Brands geAdd s Change

Config & Change

Sites deadd s Change

Shelvas gpfdd & Change
Supplies gefdd s Change

Fig. 1: The virtual application Constance among your regular applications.

24 Chapter 11. Editing

cHAPTER 12

Custom settings form

If you aim at creating a custom settings form this is possible in the following way: You can inherit from
ConstanceAdmin and set the form property on your custom admin to use your custom form. This allows you
to define your own formsets and layouts, similar to defining a custom form on a standard Django ModelAdmin. This
way you can fully style your settings form and group settings the way you like.

from constance.admin import ConstanceAdmin, Config
from constance.forms import ConstanceForm
class CustomConfigForm(ConstanceForm) :

def __ _init__ (self, =args, +**kwargs):
super () .__init__ (xargs, =*=*kwargs)
#... do stuff to make your settings form nice

class ConfigAdmin (ConstanceAdmin) :
change_list_form CustomConfigForm
change_list_template = 'admin/config/settings.html'

admin.site.unregister ([Config])
admin.site.register ([Config], ConfigAdmin)

You can also override the get_changelist_form method which is called in changelist_view to get the
actual form used to change the settings. This allows you to pick a different form according to the user that makes the
request. For example:

class SuperuserForm(ConstanceForm) :
Do some stuff here

class MyConstanceAdmin (ConstanceAdmin) :
def get_changelist_form(self, request):
if request.user.is_superuser:
return SuperuserForm:
else:
return super () .get_changelist_form(request)

Note that the default method returns self.change_list_form.

25

django-constance Documentation, Release dev

26 Chapter 12. Custom settings form

cHAPTER 13

More documentation

13.1 Backends

Constance ships with a bunch of backends that are used to store the configuration values. By default it uses the Redis
backend. To override the default please set the CONSTANCE_BACKEND setting to the appropriate dotted path.

13.1.1 Redis

The configuration values are stored in a redis store and retrieved using the redis-py library. Please install it like this:

’pip install django-constance[redis]

Configuration is simple and defaults to the following value, you don’t have to add it to your project settings:

’CONSTANCE_BACKEND = 'constance.backends.redisd.RedisBackend'

Default redis backend retrieves values every time. There is another redis backend with local cache. CachingRedis-
Backend stores the value from a redis to memory at first access and checks a value ttl at next. Configuration installation
is simple:

CONSTANCE_BACKEND = 'constance.backends.redisd.CachingRedisBackend'
optionally set a value ttl
CONSTANCE_REDIS_CACHE_TIMEOUT = 60

Settings

There are a couple of options:

27

https://pypi.python.org/pypi/redis

django-constance Documentation, Release dev

CONSTANCE_REDIS_CONNECTION

A dictionary of parameters to pass to the to Redis client, e.g.:

CONSTANCE_REDIS_CONNECTION = {

'host': 'localhost',
'port': 6379,
'db': 0,

Alternatively you can use a URL to do the same:

CONSTANCE_REDIS_CONNECTION = 'redis://username:password@localhost:6379/0"'

CONSTANCE_REDIS_CONNECTION_CLASS

An (optional) dotted import path to a connection to use, e.g.:

’CONSTANCE_REDIS_CONNECTION_CLASS = 'myproject.myapp.mockup.Connection'

If you are using django-redis, feel free to use the CONSTANCE_REDIS_CONNECTION_CLASS setting to define a
callable that returns a redis connection, e.g.:

’CONSTANCE_REDIS_CONNECTION_CLASS = 'django_redis.get_redis_connection'

CONSTANCE_REDIS_PREFIX

The (optional) prefix to be used for the key when storing in the Redis database. Defaults to ' constance: '. E.g.:

CONSTANCE_REDIS_PREFIX = 'constance:myproject:'

CONSTANCE_REDIS PICKLE_VERSION

The (optional) protocol version of pickle you want to use to serialize your python objects when storing in the Redis
database. Defaults to pickle .DEFAULT_PROTOCOL. E.g.:

CONSTANCE_REDIS_PICKLE_VERSION = pickle.DEFAULT_PROTOCOL

You might want to pin this value to a specific protocol number, since pickle .DEFAULT_PROTOCOL means differ-
ent things between versions of Python.

CONSTANCE_REDIS_CACHE_TIMEOUT

The (optional) ttl of values in seconds used by CachingRedisBackend for storing in a local cache. Defaults to 60
seconds.

28 Chapter 13. More documentation

https://niwinz.github.io/django-redis/latest/

django-constance Documentation, Release dev

13.1.2 Database

Database backend stores configuration values in a standard Django model. It requires the package django-picklefield
for storing those values.

You must set the CONSTANCE_BACKEND Django setting to:

’CONSTANCE_BACKEND = 'constance.backends.database.DatabaseBackend'

Please make sure to apply the database migrations:

’python manage.py migrate

Note: If you're upgrading Constance to 1.0 and use Django 1.7 or higher please make sure to let the migration system
know that you’ve already created the tables for the database backend.

You can do that using the ——fake option of the migrate command:

python manage.py migrate database —--fake

Just like the Redis backend you can set an optional prefix that is used during database interactions (it defaults to an
empty string, '). To use something else do this:

CONSTANCE_DATABASE_PREFIX = 'constance:myproject:'

Caching

The database backend has the ability to automatically cache the config values and clear them when saving. Assuming
you have a CACHES setting set you only need to set the the CONSTANCE_DATABASE_CACHE_BACKEND setting to
the name of the configured cache backend to enable this feature, e.g. “default”:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'"LOCATION': '"127.0.0.1:11211",
}
}
CONSTANCE_DATABASE_CACHE_BACKEND = 'default'

Warning: The cache feature won’t work with a cache backend that is incompatible with cross-process caching
like the local memory cache backend included in Django because correct cache invalidation can’t be guaranteed.

If you try this, Constance will throw an error and refuse to let your application start. You can work around this
by subclassing constance.backends.database.DatabaseBackend and overriding __init__ to remove
the check. You’ll want to consult the source code for that function to see exactly how.

We’re deliberately being vague about this, because it’s dangerous; the behavior is undefined, and could even cause
your app to crash. Nevertheless, there are some limited circumstances in which this could be useful, but please
think carefully before going down this path.

Note: By default Constance will autofill the cache on startup and after saving any of the config values. If you want to

13.1. Backends 29

https://pypi.org/project/django-picklefield/
https://docs.djangoproject.com/en/dev/ref/settings/#std-setting-CACHES

django-constance Documentation, Release dev

disable the cache simply set the CONSTANCE_DATABASE_CACHE_AUTOFILL_TIMEOUT setting to None.

13.1.3 Memory

The configuration values are stored in a memory and do not persist between process restarts. In order to use this
backend you must set the CONSTANCE_BACKEND Django setting to:

CONSTANCE_BACKEND = 'constance.backends.memory.MemoryBackend'

The main purpose of this one is to be used mostly for testing/developing means, so make sure you intentionally use it
on production environments.

13.2 Testing

Testing how your app behaves with different config values is achieved with the override config class. This
intentionally mirrors the use of Django’s override_setting.

class override_config (**kwargs)
Replaces key-value pairs in the config. Use as decorator or context manager.

13.2.1 Usage

It can be used as a decorator at the TestCase level, the method level and also as a context manager.

from constance import config
from constance.test import override_config

from django.test import TestCase

@override_config (YOUR_NAME="Arthur of Camelot")
class ExampleTestCase (TestCase) :

def test_what_is_your_name (self):
self.assertEqual (config.YOUR_NAME, "Arthur of Camelot")

Qoverride_config (YOUR_QUEST="To find the Holy Grail")
def test_what_is_your_quest (self):
self.assertEqual (config.YOUR_QUEST, "To find the Holy Grail")

def test_what_is_your_favourite_color (self):
with override_config (YOUR_FAVOURITE_COLOR="Blue?"):
self.assertEqual (config.YOUR_FAVOURITE_COLOR, "Blue?")

13.2.2 Pytest usage

Django-constance provides pytest plugin that adds marker @pytest .mark.override_config (). It handles
config override for module/class/function, and automatically revert any changes made to the constance config values
when test is completed.

30 Chapter 13. More documentation

https://docs.djangoproject.com/en/dev/topics/testing/tools/#django.test.TestCase
https://www.python.org/dev/peps/pep-0343/

django-constance Documentation, Release dev

pytest.mark.override_config (**kwargs)
Specify different config values for the marked tests in kwargs.

Module scope override

pytestmark = pytest.mark.override_config (API_URL="/awesome/url/")

def test_api_url_is_awesome () :

Class/function scope

from constance import config

@pytest .mark.override_config (API_URL="/awesome/url/")
class SomeClassTest:
def test_is_awesome_url (self) :
assert config.API_URL == "/awesome/url/"

@pytest .mark.override_config (API_URL="/another/awesome/url/")
def test_another_awesome_url (self) :
assert config.API_URL == "/another/awesome/url/"

If you want to use override as a context manager or decorator, consider using

from constance.test.pytest import override_config

def test_override_context_manager () :
with override_config (BOOL_VALUE=False) :

or
@Qoverride_config (BOOL_VALUE=False)
def test_override_context_manager () :

Pytest fixture as function or method parameter (NOTE: no import needed as fixture is available globally)

def test_api_url_is_awesome (override_config):
with override_config (API_URL="/awesome/url/") :

Any scope, auto-used fixture alternative can also be implemented like this

@pytest. fixture (scope='module', autouse=True) # e.g. module scope
def api_url (override_config):
with override_config (API_URL="/awesome/url/") :
yield

13.2.3 Memory backend

If you don’t want to rely on any external services such as Redis or database when running your unittests you can select
MemoryBackend for a test Django settings file

CONSTANCE_BACKEND = 'constance.backends.memory.MemoryBackend'

It will provide simple thread-safe backend which will reset to default values after each test run.

13.2. Testing 31

django-constance Documentation, Release dev

13.3 Changelog

13.3.1 v3.1.0 (2023/08/21)

Add support for using a subdirectory of MEDIA_ROOT for file fields

Remove pypy from tox tests

13.3.2 v3.0.0 (2023/07/27)

Refactor database backend Backward incompatible changes: remove 'c
database' from INSTALLED_APPS

Dropped support for python < 3.7 and django < 3.2
Example app now supports django 4.1
Add support for django 4.2

Forward the request when saving the admin changelist form

13.3.3 v2.9.1 (2022/08/11)

Add support for gettext in fieldset headers
Add support for Django 4.1

Fix text format for MultiValueField usage

13.3.4 v2.9.0 (2022/03/11)

Added arabic translation

Add concrete_model class attribute to fake admin model
Added tests for django 3.2

Fix do not detect datetime fields as date type

Added support for python 3.10

Fixes for Ukrainian locale

Added documentation for constance_dbs config

Add caching redis backend

Serialize according to widget

Add default_auto_field to database backend

13.3.5 v2.8.0 (2020/11/19)

Prevent reset to default for file field
Fields_list can be a dictionary, when a fieldset is defined as collapsible

Create and add fa language translations files

onstance.backends.

32

Chapter 13

. More documentation

django-constance Documentation, Release dev

» Respect other classes added by admin templates
* Removed deprecated url()
» Use gettext_lazy instead of ugettext_lazy

» Updated python and django version support

13.3.6 v2.7.0 (2020/06/22)

* Deleted south migrations

* Improve grammar of documentation index file

» Simplify documentation installation section

* Fix IntegrityError after 2.5.0 release (Allow concurrent calls to DatabaseBackend.set() method)
* Make groups of fieldsets collapsable

* Allow override_config for pytest

 Put back wheel generation in travis

* Fix wrong “is modified” in admin for multi line strings

» Switch md5 to sha256

 Fix Attempts to change config values fail silently and appear to succeed when user does not have change per-
missions

* Make constance app verbose name translatable

» Update example project for Django>2

* Add anchors in admin for constance settings

* Added a sticky footer in django constance admin
* Add memory backend

* Added Ukrainian locale

¢ Added lazy checks for pytest

13.3.7 v2.6.0 (2020/01/29)

* Drop support py<3.5 django<2.2
* Set pickle protocol version for the Redis backend

¢ Add a command to delete stale records

13.3.8 v2.5.0 (2019/12/23)

* Made results table responsive for Django 2 admin

* Add a Django system check that CONFIG_FIELDSETS accounts for all of CONFIG
» Rewrite set() method of database backend to reduce number of queries

* Fixed “can’t compare offset-naive and offset-aware datetimes” when USE_TZ = True

* Fixed compatibility issue with Django 3.0 due to django.utils.six

13.3. Changelog 33

django-constance Documentation, Release dev

* Add Turkish language

13.3.9 v2.4.0 (2019/03/16)

» Show not existing fields in field_list

* Drop Django<1.11 and 2.0, fix tests vs Django 2.2b

* Fixed “Reset to default” button with constants whose name contains a space
» Use default_storage to save file

Allow null & blank for PickleField

¢ Removed Python 3.4 since is not longer supported

13.3.10 v2.3.1 (2018/09/20)

* Fixes javascript typo.

13.3.11 v2.3.0 (2018/09/13)

¢ Added zh_Hans translation.

¢ Fixed TestAdmin.test_linebreaks() due to linebreaksbr() behavior change on Django 2.1
* Improved chinese translation

* Fix bug of can’t change permission chang_config’s name

» Improve consistency of reset value handling for date

* Drop support for Python 3.3

Added official Django 2.0 support.
* Added support for Django 2.1

13.3.12 v2.2.0 (2018/03/23)

¢ Fix ConstanceForm validation.

CONSTANCE_DBS setting for directing constance permissions/content_type settings to certain DBs only.
Added config labels.

Updated italian translations.

Fix CONSTANCE_CONFIG_FIELDSETS mismatch issue.

13.3.13 v2.1.0 (2018/02/07)

* Move inline JavaScript to constance.js.
¢ Remove translation from the app name.
* Added file uploads.

» Update information on template context processors.

34 Chapter 13. More documentation

django-constance Documentation, Release dev

* Allow running set while database is not created.

* Moved inline css/javascripts out to their own files.

* Add French translations.

* Add testing for all supported Python and Django versions.
* Preserve sorting from fieldset config.

* Added datetime.timedelta support.

¢ Added Estonian translations.

* Account for server timezone for Date object.

13.3.14 v2.0.0 (2017/02/17)

* BACKWARD INCOMPATIBLE Added the old value to the config_updated signal.
* Added a get_changelist_form hook in the ModelAdmin.

* Fix create_perm in apps.py to use database alias given by the post_migrate signal.

* Added tests for django 1.11.

 Fix Reset to default to work with boolean/checkboxes.

¢ Fix handling of MultiValueField’s (eg SplitDateTimeField) on the command line.

13.3.15 v1.3.4 (2016/12/23)

* Fix config ordering issue

Added localize to check modified flag

¢ Allow to rename Constance in Admin

¢ Preserve line breaks in default value

Added functionality from django-constance-cli

Added “Reset to default” feature

13.3.16 v1.3.3 (2016/09/17)

¢ Revert broken release

13.3.17 v1.3.2 (2016/09/17)

* Fixes a bug where the signal was sent for fields without changes

13.3.18 v1.3.1 (2016/09/15)

¢ Improved the signal path to avoid import errors

* Improved the admin layout when using fieldsets

13.3. Changelog 35

django-constance Documentation, Release dev

13.3.19 v1.3 (2016/09/14)

BACKWARD INCOMPATIBLE Dropped support for Django < 1.8).
Added ordering constance fields using OrderedDict

Added a signal when updating constance fields

13.3.20 v1.2.1 (2016/09/1)

Added some fixes to small bugs

Fix cache when key changes

Upgrade django_redis connection string
Autofill cache key if key is missing
Added support for fieldsets

13.3.21 v1.2 (2016/05/14)

Custom Fields were added as a new feature
Added documentation on how to use Custom settings form
Introduced CONSTANCE_IGNORE_ADMIN_VERSION_CHECK

Improved documentation for CONSTANCE_ADDITIONAL_FIELDS

13.3.22 v1.1.2 (2016/02/08)

Moved to Jazzband organization (https://github.com/jazzband/django-constance)
Added Custom Fields
Added Django 1.9 support to tests

Fixes icons for Django 1.9 admin

13.3.23 v1.1.1 (2015/10/01)

Fixed a regression in the 1.1 release that prevented the rendering of the admin view with constance values when
using the context processor at the same time.

13.3.24 v1.1 (2015/09/24)

BACKWARD INCOMPATIBLE Dropped support for Python 2.6 The supported versions are 2.7, 3.3 (on
Django < 1.9) and 3.4.

BACKWARD INCOMPATIBLE Dropped support for Django 1.4, 1.5 and 1.6 The supported versions are 1.7,
1.8 and the upcoming 1.9 release

Added compatibility to Django 1.8 and 1.9.
Added Spanish and Chinese (zh_CN) translations.

Added override config decorator/context manager for easy festing.

36

Chapter 13. More documentation

https://github.com/jazzband/django-constance

django-constance Documentation, Release dev

* Added the ability to use linebreaks in config value help texts.

* Various testing fixes.

13.3.25 v1.0.1 (2015/01/07)

* Fixed issue with import time side effect on Django >=1.7.

13.3.26 v1.0 (2014/12/04)

* Added docs and set up Read The Docs project:
https://django-constance.readthedocs.io/

 Set up Transifex project for easier translations:
https://www.transifex.com/projects/p/django-constance

* Added autofill feature for the database backend cache which is enabled by default.

* Added Django>=1.7 migrations and moved South migrations to own folder. Please upgrade to South>=1.0 to
use the new South migration location.

For Django 1.7 users that means running the following to fake the migration:

django-admin.py migrate database —-—-fake

e Added consistency check when saving config values in the admin to prevent accidentally overwriting other
users’ changes.

* Fixed issue with South migration that would break on MySQL.

* Fix compatibility with Django 1.6 and 1.7 and current master (to be 1.8).

* Fixed clearing database cache en masse by applying prefix correctly.

* Fixed a few translation related issues.

» Switched to tox as test script.

* Fixed a few minor cosmetic frontend issues (e.g. padding in admin table header).

* Deprecated a few old settings:

deprecated replacement
CONSTANCE_CONNECTION_CLASS | CONSTANCE_REDIS_CONNECTION_CLASS
CONSTANCE_CONNECTION CONSTANCE_REDIS_CONNECTION
CONSTANCE_PREFIX CONSTANCE_REDIS_PREFIX

¢ The undocumented feature to use an environment variable called CONSTANCE_SETTINGS_MODULE to define
which module to load settings from has been removed.

13.3.27 v0.6 (2013/04/12)

* Added Python 3 support. Supported versions: 2.6, 2.7, 3.2 and 3.3. For Python 3.x the use of Django > 1.5.x is
required.

* Fixed a serious issue with ordering in the admin when using the database backend. Thanks, Bouke Haarsma.

13.3. Changelog 37

https://django-constance.readthedocs.io/
https://www.transifex.com/projects/p/django-constance

django-constance Documentation, Release dev

» Switch to django-discover-runner as test runner to be able to run on Python 3.

* Fixed an issue with refering to static files in the admin interface when using Django < 1.4.

13.3.28 v0.5 (2013/03/02)

* Fixed compatibility with Django 1.5’s swappable model backends.

* Converted the key field of the database backend to use a CharField with uniqueness instead of just
TextField.

For South users we provide a migration for that change. First you have to “fake” the initial migration we’ve also
added to this release:

’django—admin.py migrate database —-—-fake 0001

After that you can run the rest of the migrations:

’djangofadmin.py migrate database

* Fixed compatibility with Django>1.4’s way of refering to static files in the admin.

Added ability to add custom authorization checks via the new CONSTANCE_SUPERUSER_ONLY setting.

Added Polish translation. Thanks, Janusz Harkot.
* Allow CONSTANCE_REDIS_CONNECTION being an URL instead of a dict.
¢ Added CONSTANCE_DATABASE_PREFIX setting allow setting a key prefix.

» Switched test runner to use django-nose.

38 Chapter 13. More documentation

cHAPTER 14

Indices and tables

* genindex
* modindex

e search

39

django-constance Documentation, Release dev

40 Chapter 14. Indices and tables

Index

O

override_config (built-in class), 30

P

pytest.mark.override_config() (built-in
function), 30

41

	Features
	Quick Installation
	Configuration
	Signals
	Custom fields
	Ordered Fields in Django Admin
	Fieldsets
	Fieldsets collapsing
	Field internationalization
	Usage
	Python
	Django templates
	Command Line

	Editing
	Custom settings form
	More documentation
	Backends
	Testing
	Changelog

	Indices and tables
	Index

